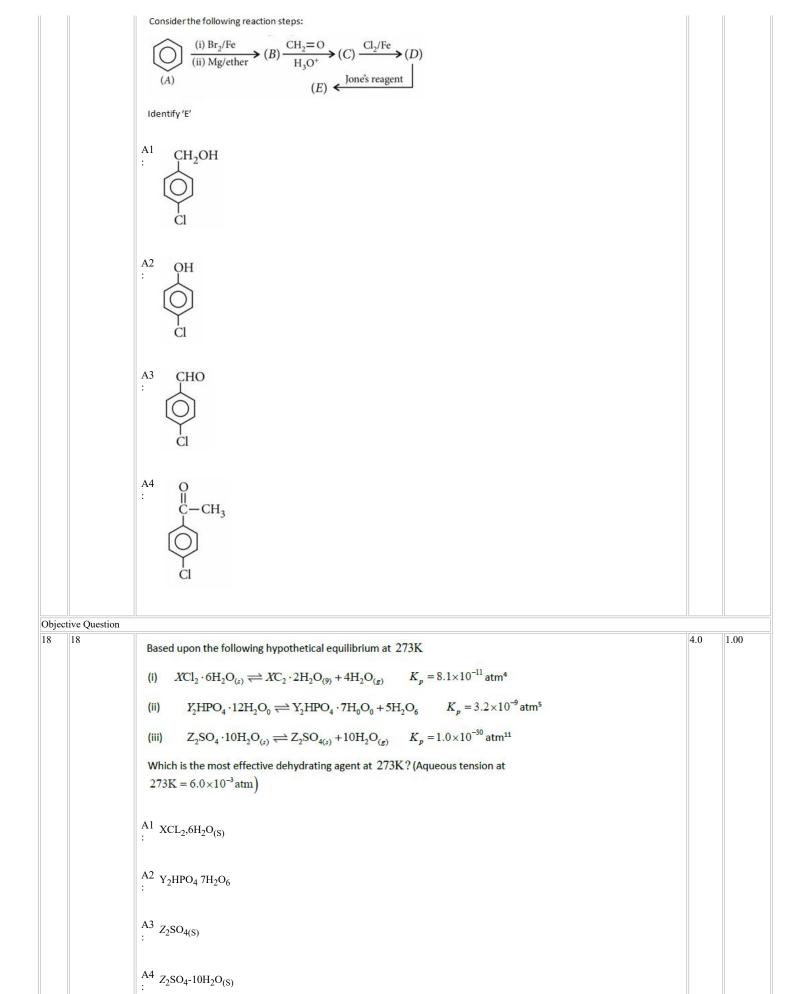

Exam Date: 19-Sep-2020 Batch: 12:30-14:30


Sr. No.	Client Question ID	Question Body and Alternatives	Marks	Negativ Marks
Objec	tive Question			
1	1	Find out the total number of voids in 0.5 mole of a compound forming hexagonal closed packed structure.	4.0	1.00
		$A3$ 18.069×10^{23} $A4$ 3.011×10^{23}		
Objec	tive Question			
2	2	How much energy will be required to ionise 1 mole of hydrogen atoms? A1 1350 KJ	4.0	1.00
		A2 1350 J A3 1312 KJ		
		A4 1312 J		
Objec	tive Question			
3	3	A_1 and A_2 are two ores of metal $M.A_1$ on calcination gives black precipitate, CO_2 and	4.0	1.00

		A3 CuCO ₃ and Cu ₂ O:		
		A4 CuCO ₃ -Cu(OH) ₂ and Cu ₂ O :		
Objec	ctive Question			
4	4	The values of observed and calculated molecular weights of silver nitrate are 92.64 and 170 respectively. The degree of dissociation of silver nitrate will be	4.0	1.00
		A1 52.8%		
		A2 83.5%		
		A3 46.7%		
		A4 60.2%		
Objec	ctive Question			
5	5	The total number of gas molecules in a room of capacity 25m ³ at a temperature of 27°C and 1atm pressure will be	4.0	1.00
		A1 3.011x10 ²³		
		$^{A2}_{:}$ 6.119x10 ²³		
		A3 6.119x10 ²⁶		
		A4 3.011x10 ²⁶		
Objec	ctive Question			
6	6	The entropy change can be calculated by using the expression, $\Delta S=\frac{q_{_{TCV}}}{T}$. When water freezes in a glass beaker what happens?	4.0	1.00
		ΔS (system) decreases but ΔS (surroundings) remains the same		
		A2 $\Delta S(\text{system})$ increases but $\Delta S(\text{surroundings})$ decreases		
		ΔS (system) decreases but ΔS (surroundings) increases		
		$^{ m A4}$ ΔS (system) and ΔS (surroundings) both decrease		
Objec	ctive Question			
7	7	Under which of the following reaction conditions, aniline gives <i>P</i> -nitro derivative as the major product?	4.0	1.00

	A1 Acetyl chloride/pyridine followed by reaction with conc. conc. H $_2$ SO $_4$ + conc. HNO $_3$:		
	A2 Ethyl alcohol/pyridine followed by conc. H ₂ SO ₄ + conc.HNO ₃		
	A3 e-4		
	e ⁻⁴		
	A4 Reaction with conc. HNO 3+conc.H ₂ SO ₄		
Objective Question			
8 8	Which of the following statements is <i>not</i> true?	4.0	1.00
	A1 Nascent hydrogen can be produced even at room temperature, but atomic hydrogen is produced at elevated temperature:		
	A2 Nascent hydrogen can never be isolated but atomic hydrogen can be isolated		
	A3 Reducing power of atomic hydrogen is much less than that of nascent hydrogen		
	A4 Both nascent and atomic hydrogen are more reactive than ordinary hydrogen:		
Objective Question			
9 9	Amongst Tif_6^{2-} CoF ₆ ³ ,Cu ₂ Cl ₂ and NiCl ₄ ²⁻ , the colourless species are	4.0	1.00
	$^{A1}_{:}$ CoF $_{6}$ ³⁻ and NiC1 $_{4}$ ²⁻		
	A2		
	A2 TiF $_6$ ²⁻ and Cof $_6$ ³⁻		
	A3 2-		
	$\stackrel{A3}{:}$ CU ₂ C1 ₂ and NiC1 ₄ ²⁻		
	$^{A4}_{\cdot}$ TiF $_{6}^{2}$ -and CU $_{2}$ C1 $_{2}$		
	: IIF6 and CO ₂ CI ₂		
Objective Question			
10 10	The values of k_{sp} of two sparingly soluble salts Ni(OH) ₂ and AgCN are $2x10^{-15}$ and $6x10^{-17}$ respectively. Which salt is more	4.0	1.00
	soluble?		
	Al Ni(OH) ₂		
	A2 AgCN		
	•		
	A3 Both are equally soluble		
	A3 Both are equally soluble:		
	A3 Both are equally soluble A4 Cannot be predicted		

		A2 22 days :		
		A3 26 days		
		A4 24 days		
Objec	tive Question			
14	14	An electric current is passed through an aqueous solution of a mixture of alanine (isoelectric point 6.0), glutamic acid (3.2) and arginine (10.7) buffered at pH 6. What is the fate of the three acids?	4.0	1.00
		A1 Glutamic acid migrates to anode at pH 6. Arginine present as a cation and migrates to the cathode. Alanine as a dipolar ion remains uniformly distributed in solution		
		A2 : Glutamic acid migrates to cathode and others remain uniformly distributed in solution		
		A3 : All these remain uniformly distributed in solution		
		A4 : All three move to cathode		
Objec	tive Question			
15	15	Oxidation states of X, Y, Zare +2, +5 and -2 respectively. Formula of the compound formed will be	4.0	1.00
		$\begin{bmatrix} A1 & X_2YZ_6 \\ \vdots \end{bmatrix}$		
		A2 XY ₂ Z ₆		
		A3 _{XY5} Z ₂ :		
		$ \stackrel{\text{A4}}{:} X_3 Y Z_4 $		
Obiec	tive Question			
16	16	Half-life time of a radioactive element <i>X</i> is same as the mean life time of another radioactive element <i>Y</i> Initially both have same number of atoms, then	4.0	1.00
		Al X and Y have the same decay rate initially:		
		A2 X and Y		
		A2 X and Y : A3 Y will decay at faster rate than X :		
Obiec	tive Question	A3 Y will decay at faster rate than X :		

	ctive Question		11.0	
9	19	The correct IUPAC name	4.0	1.00
		A1 5-methyl-4-(1"-2"-dimethylpropyl) heptane		
		A2 3-methyl-4-(1; 2'-dimethylpropyl) heptane		
		A3 > 2 - 1		
		A3 2, 3, 5-trimethyl-4-propylheptane		
		A4 4-propyl-2, 3, 5-trimethylheptane		
	ctive Question			
20	20	Electrolysis of NaCl solution with inert electrodes for certain period of time gave 600cm ³ of 1.0M Na OH in the electrolytic cell. During the same period, 31.80g of copper was deposited in a copper voltmeter in series with the electrolytic cell. What is the percentage of current efficiency in the electrolytic cell?(At. wt. of Cu = 63.6)	4.0	1.00
		A1 40 :		
		A2 50 :		
		A3 60 :		
		A4 25 :		
Ohiec	ctive Question			
21		Aluminium displaces hydrogen from dilute HC1 whereas silver does not. The emf of a cell prepared by combining $A1/A1^{3+}$ and Ag/Ag^+ is 2.46V. The reduction potential of silver electrode is $+0.08V$. The reduction potential of aluminium electrode is		1.00
		A1 +1.66V		
		A2 -3.26V		
		A3 +3.26V		
		A4 -1.66 <i>V</i> :		
	ctive Question			
22	22	The hybridisation, oxidation number and shape of central metal ion of Wilkinson's catalyst are respectively	4.0	1.00
		$\stackrel{\text{A1}}{:} dsp^2 + 1$, square planar		
		$A2 sp^3+4$, tetrahedral		

	A3 $sp^3 d$,+2, trigonal bipyramidal:		
	$A4$ d^2sp^3+6 , octahedral		
bjective Question			
bjective Question 3 23	Consider the following reactions HO CH_3 H_3C CH_3 H_3C CH_3 CH_3 CH_3 H_3C CH_3	4.0	1.00
pjective Question			
4 24	Consider the following reactions, $A+B \rightleftharpoons k_1, C, C+B \rightarrow k_2 \rightarrow D$ The rate in terms of $-\frac{d[B]}{dt}$ will be	4.0	1.00
bjective Question			
25	Aluminium vessels should not be washed with materials containing washing soda since	4.0	1.00
	A1 washing soda is expensive		

		A2 washing soda is easily decomposed:		
		A3 washing soda reacts with Al to form soluble aluminate		
		A4 washing soda reacts with Al to form insoluble aluminium oxide:		
Object	tive Question			
26	26	when I_2 is passed through KC1,KF,KBr	4.0	1.00
		$A1 Cl_2$ and Br_2 are evolved.		
		A2 Cl ₂ is evolved.		
		A3 Cl ₂ , Br ₂ , f ₂ are evolved:		
		A4 Br ₂ is evolved :		
Object	tive Question			
27	27	Zeta potential (or electrokinetic potential) is the	4.0	1.00
		Al potential required to bring about coagulation of a colloidal sol		
		A2 potential required to give the particles a speed of 1cm/sec in the sol		
		A3 potential difference between fixed charged layer and the diffused layer having opposite charges		
		A4 potential energy of the colloidal particles		
Object	tive Question			
28	28	Gadolinium belongs to 4f series and its atomic number is 64. Which of the following is the correct electronic configuration of gadolinium?	4.0	1.00
		A1 [Xe]4f ⁹ 5s ¹		
		$ \begin{array}{c} A2 \\ \vdots \\ Xe]4f^{7}sd^{1}6s^{2} \end{array} $		
		$^{A3}_{:}$ [Xe]4 f^{6} sd 2 6s 2		
		$^{A4}_{:}$ [Xe]4/ 8 sd ²		
Obiect	tive Question			
29	29		4.0	1.00

		In the nuclear reaction, $\frac{7}{3}Li+1H\to 2\frac{4}{2}$ He, the mass loss is nearly 0.02 amu. Hence, the energy released (in million kcal/mol) in the process is approximately		
		A1 428 :		
		A2 200		
		A3 100		
		A4 50		
Object	ive Question			
	30	Three separate samples of a solution of a single salt gave these results. One formed a white precipitate with excess ammonia solution, one formed a white precipitate with dil. Naclsolution and one formed a black precipitate with H ₂ S the salt could be	4.0	1.00
		Al AgNO ₃		
		A2 Pb(NO ₃) ₂		
		A3 Hg(NO ₃) ₂ :		
		A4 MnSO ₄ :		
Object	ive Question			
	31	Which of the following has largest number of isomers?	4.0	1.00
		A1 [Ru(NH ₃) ₄ C1 ₂] ⁴		
		A2 [Co(en) ₂ C1 ₂] ⁺		
		A3 [1r(PR ₃) ₂ H(CO)] ²⁺		
		A4 [Co(NH ₃) ₅ C1] ²⁺		
Object	ive Question			
	32	The first ionisation potential of Na, Mg. Al and Si are in the order	4.0	1.00
		A1 Na < Mg > A1 < Si		
		$ \begin{array}{ll} A2 & Na > Mg > A1 > Si \end{array} $		
		A3 Na < Mg < Al > Si		

	$\stackrel{A4}{:}$ Na > Mg > Al < Si		
1: :: 0	<u> </u>		
bjective Ques	Softening of hard water is done using sodium aluminium silicate (zeolite). This causes	4.0	1.00
	Sortelling of hard water is done using socialit attainment sincate (zeotite). This eduses		
	A1 : adsorption of Ca ²⁺ and Mg ²⁺ ions of hard water replacing Na ⁺		
	A2 adsorption of Ca ²⁺ and Mg ²⁺ ions of hard water replacing A1 ³⁺ ions		
	A3 adsorption of Ca ²⁺ and Mg ²⁺ ions of hard water replacing Na ⁺ A1 ³⁺ ions		
	A4 adsorption of Ca ²⁺ and Mg ²⁺ ions of hard water but Na ⁺		
Nhipatiya Owas	tion.		
Objective Ques 4 34	1.25 g of a sample of Na ₂ CO ₃ and Na ₂ SO ₄ is dissolved in 250mL solution. 25ml of this solution neutralises 20mL of	4.0	1.00
	0.1NH ₂ SO ₄ . The % of Na ₂ CO ₃ in this sample is		
	A1 84.8%		
	A2 8.48%		
	A3 15.2%		
	A4 42.4%		
bjective Ques	tion		
5 35	The reagents employed to carryout the following transformation are	4.0	1.00
	OH OH		
	H		
	$H_{3}C \times_{CH_3} \xrightarrow{O} H_{3}C \times_{CH_3} $		
	1130 5113		
	Al LiAlH ₄ ,H ₂ SO ₄ / heat		
	A2 PCC/CH ₂ C1 ₂ followed by <i>HIO</i> ₄ :		
	A 2		
	A3 NaBH ₄ /CH ₃ OH followed by <i>HIO</i> ₄ :		
	A4 O ₃ followed by (CH ₃) ₂ S		
	A4 O ₃ followed by (CH ₃) ₂ S:		
bjective Ques		4.0	1.00

	The value of $\begin{vmatrix} x+1 & 3 & 5 \\ 2 & x+2 & 5 \\ 2 & 3 & x+4 \end{vmatrix}$ A1 0 A2 $(x-1)(x+9)^2$		
	A3 $(x-1)^2(x+9)$ A4 $(x-1)(x+9)$:		
Objective Question			
37 37	The rank of the matrix $\begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$ is $\begin{bmatrix} A1 & 2 \\ \vdots & 2 \end{bmatrix}$	4.0	1.00
	A2 3 : A3 1 : A4 0 :		
Objective Question			
38 38	The value of "k" for which the equations $x+y+3z=0$; $4x+3y+kz=0$; and $2x+y+2z=0$ have a trivial solution is A1 $k=8$: A2 $k=-8$:	4.0	1.00
	$ \begin{array}{ll} A3 & k \neq 8 \\ \vdots & k \neq -8 \end{array} $		
Objective Overtion			
Objective Question 39 39	The domain of the rational function $f(x) = \frac{x^2 + x + 2}{x^2 - x}$ is	4.0	1.00
	A1 [0,1] : A2 R- {0}		

	A3 R-{1}		
	A4 R-{0,1}		
bjective Question			
) 40	The domain of the reciprocal function of $F(X)=X$ is	4.0	1.00
	A1 (-∞,0) :		
	A2 (0,∞)		
	A3 (-∞,∞)		
	$\begin{array}{c} A4 \\ \vdots \end{array} (-\infty,0) \cup (0,\infty)$		
bjective Question			
41	$\lim_{x\to 0^+} \frac{3x+ x }{7x-5 x }$ is	4.0	1.00
	A1 <u>1</u> : <u>2</u>		
	$\begin{array}{ccc} A2 & -1 \\ \vdots & \overline{2} \end{array}$		
	A3 ₂ :		
	A4 -2 :		
bjective Question			
2 42	$\lim_{x\to 0} \frac{\sin{(\beta x)}}{\sin{(\alpha x)}}$, $\alpha \neq 0$ is	4.0	1.00
	$egin{array}{ccc} A1 & & & & & & & & & & & & & & & & & & $		
	$\begin{array}{c} A2 \ \underline{-\beta} \\ \vdots \ \overline{\alpha} \end{array}$		
	$\begin{array}{ccc} A3 & \alpha \\ \vdots & \overline{\beta} \end{array}$		
	$A4 = \frac{-\alpha}{\beta}$		

bjective Questi		4.0	1.00
43	$\lim_{x\to 0} \frac{3^x + 1 - \cos x - s^x}{x}$ is	4.0	1.00
	Al 1 - log3		
	A2 log3-1		
	$ \begin{array}{ccc} A3 & 1 \\ \vdots & \overline{log3-1} \end{array} $		
	$\begin{array}{c} A4 \\ \vdots \\ \hline 1 - log3 \end{array}$		
jective Questi	on		
44	If $f(x) = \begin{cases} -x^2; & if \ x \le 0 \\ 5x - 4; \ 0 < x \le 1 \\ 4x^2 - 3x; & if \ 1 < x \le 2 \\ 3x + 4; & if \ x \ge 2 \end{cases}$	4.0	1.00
	Then for what values of " a " and " b ", we have		
	$\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x) = \lim_{x\to b^+} f(x)$		
	$\begin{bmatrix} A1 \\ \vdots \end{bmatrix} a = 0 ; b = I$		
	A2 $a = 1$; $b = 2$		
	A3 $a = 0$; $b = 2$		
	A4 $a = -1; b = -2$		
jective Questi	on		
45	$-3+ix^2y$ and x^2+y+i4 are complex conjugates of each other if	4.0	1.00
	A1 $x = \pm 2i$; $y = \pm 1$		
	A2 $x = \pm 2i$; y = 1		
	$ \begin{array}{ll} A3 & x = \pm 2i; \\ \vdots & y = -1 \end{array} $		
	A4 $x = 2i$; $y = \pm 1$		

46 46		Which of the following is true?	4.0	1.00
		$ \stackrel{\text{Al}}{:} z_1 - z_2 \le z_1 - z_2 $		
		A2 g g g g		
		$ z_1 - z_2 = z_1 - z_2 $		
		$ \stackrel{\text{A3}}{:} z_1 - z_2 \ge z_1 - z_2 $		
		$ \stackrel{\text{A4}}{:} z_1 - z_2 = z_1 + z_2 $		
Objective (
47 47		$\sqrt{-7+4i}$ is	4.0	1.00
		A1 3-4i (OR) -3-4i :		
		A2 3+4i (OR) 3-4i		
		A3 -3+4i (OR) 3-4i		
		A4 3+4i (OR) -3-4i		
Objective (Question			
48 48		If "P" represents the variable complex number "z" and if $\arg\left(\frac{z-1}{x+3}\right)=\frac{\pi}{2}$, then the locus of "P" is	4.0	1.00
		$ \begin{array}{c} A1 \\ \vdots \\ x^2 - y^2 + 2x - 3 \end{array} $		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$\overset{\text{A3}}{:} x^2 + y^2 - 2x - 3$		
		$\begin{array}{c} A4 \\ \vdots \\ x^{2}+y^{2}+2x+3 \end{array}$		
Objective (Question			
49 49		The P.I of $(D^2+6D+8)=e^{-2x}$ is	4.0	1.00
		$\begin{array}{ccc} A1 & xe^{-2x} \\ \vdots & 2 \end{array}$		
		$ \begin{array}{ccc} A2 & e^{-2x} \\ \vdots & & 2 \end{array} $		
		$\begin{array}{ccc} A3 & x \\ \vdots & \overline{2} \end{array}$		

		$\begin{array}{ccc} A4 & \frac{x^2e^{-2x}}{2} \end{array}$		
	tive Question			
50	50	The temperature "T" of a cooling objects drops at a rate proportional to the difference T-S, where "S" is constant temperature of surrounding medium. If initially T=150°C, then the temperature of the cooling object at any time "t" is	4.0	1.00
		A1 S-(150-S)e ^{kt}		
		A2 S+(150+S)e ^{kt}		
		A3 S+(150-S)e ^{kt}		
		A4 S-(150+S)e ^{kt}		
Obiaa	tive Overtion			
Овјес 51	tive Question	. 2	4.0	1.00
		The solution of $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$ is		
		$\begin{array}{c} A1 \\ \vdots \\ (y+2x)=cx^2y \end{array}$		
		$\begin{vmatrix} A2 \\ : (y-2x)=cxy^2 \end{vmatrix}$		
		$ \begin{array}{c} A3 \\ \vdots \\ (y-2x)=cxy \end{array} $		
		$ \begin{array}{c} A4 \\ \vdots \\ (y-2x)=cx^2y \end{array} $		
Ohiaa	tive Question			
52	52	Order and degree of the differential equation $(1+y')^2=y'^2$ are	4.0	1.00
		A1 (1,1)		
		A2 (1,2)		
		A3 (2,1)		
		A4 (2,2)		
01.1	· · · · · · · · · · · · · · · · · · ·			
objec	tive Question 53	A cylindrical hole 4mm in diameter and 12mm deep in a metal block is rebored to increase the diameter to 4.12 mm . Estimate the amount of metal removed.	4.0	1.00
53				

	$^{A2}_{:}$ 2.80 π mm ³		
	$^{A3}_{:}$ 2.89 π mm ³		
	$^{ m A4}_{:} $		
Objective Ques	stion		
54 54	$\lim_{x\to 0}(cotx)^{sinx}$	4.0	1.00
	$\begin{bmatrix} A1 \\ \vdots \end{bmatrix}$		
	A2 1 :		
	A3 ∞ :		
	A4 : -∞		
Objective Ques	stion		
55 55	The radius of a sphere was measured and found to be 21cm with a possible error in measurement of atmost 0.05cm. What would be the % of error produced in the Volume?	4.0	1.00
	A1 5 :		
	A2 6		
	A3 8 :		
	A4 ₇ :		
Objective Ques	$\int \frac{dx}{x^2 + 5x + 7} \mathrm{i} s$	4.0	1.00
	A1 $\frac{2}{\sqrt{5}} tan^{-1} \left(\frac{2x+5}{\sqrt{3}} \right) + c$		
	: $\frac{1}{\sqrt{2}} tan^{-1} \left(\frac{2x+5}{\sqrt{3}} \right) + c$		
	A3 $\frac{\sqrt{3}}{2} tan^{-1} \left(\frac{2x+5}{\sqrt{3}} \right) + c$		
	$\begin{array}{ccc} A4 & \frac{2}{\sqrt{3}} tan^{-1} \left(\frac{2x+5}{\sqrt{3}} \right) + c \end{array}$		

Objectiv	ive Question			
	57	How many arrangements can be made with the letters of the word "MATHEMATICS"?	4.0	1.00
		A1 4899600 :		
		A2 4989600		
		A3 4998600 :		
		A4 4969800 :		
Objecti ^r	ive Question			
	58	If $nC_4 = nC_6$, then $12C_n$ is	4.0	1.00
		A1 66		
		A2 68		
		A3 56		
		A4 58		
	ive Question			
	59	$\left(\sqrt{2}+1\right)^5+\left(\sqrt{2}-1\right)^5$ is equal to	4.0	1.00
		A1 58√2		
		A2 2√5		
		A3 58		
		A4 : √5		
Objecti	ive Question			
	60	If "b" is the A.M of "a" and "c" $(a \neq c)$ and $(b - a)$ is the G.M of "a" and $(c - a)$, then $a:b:c$ is	4.0	1.00
		A1 1:5:3		
		A2 3:1:5		

	A3 3:5:1		
	A4 1:3:5		
Objective Question	<u> </u>		
61 61	The product of the perpendiculars drawn from the point (8,0) on the hyperbola to its asymptotes is $\frac{x^2}{64} - \frac{y^2}{36} = 1$ is	4.0	1.00
	A1 25/576		
	A2 576/25		
	A3 6/25		
	A4 25/6		
Objective Question			
62 62	The area of the triangle formed by the tangent at any point on the rectangular hyperbola $xy = 72$ and its asymptotes is	4.0	1.00
	A1 36		
	A2 ₁₈ :		
	A3 72 :		
	A4 : 144		
Objective Question	<u></u>		
63 63	The locus of foot of perpendicular from the focus to a tangent of the curve $16x^2+25y^2=400$ is	4.0	1.00
	$\begin{array}{c} A1 \\ \vdots \\ x^2 + y^2 = 4 \end{array}$		
	$x^2 + y^2 = 25$		
	$x^{2}+y^{2}=16$		
	$x^{2}+y^{2}=9$		
Objective Question			
64 64	The position vectors of A and B are \vec{a} and \vec{b} . P divides AB in the ratio 3:1. Q is the midpoint of AP. The position vector of Q is	4.0	1.00

	$ \begin{array}{c} A1 \\ \vdots \\ 8 \end{array} $		
	$ \begin{array}{ccc} A2 & 3\vec{a} + 5\vec{b} \\ \vdots & 2 \end{array} $		
	$ \begin{array}{ccc} A3 \\ \vdots & \frac{5\vec{a} + 3\vec{b}}{4} \end{array} $		
	$\stackrel{\text{A4}}{:} \frac{3\vec{a} + \vec{b}}{4}$		
Objectiv	Question		
65 6	If the initial point of vector $-2\vec{t} - 3\vec{j}$ is $(-1, 5, 8)$ then the terminal point is	4.0	1.00
	$\begin{array}{c} A1 \\ \vdots \\ 3\vec{i} + 2\vec{j} + 8\vec{k} \end{array}$		
	$\begin{array}{cc} A2 \\ \vdots \\ -3\vec{\imath} + 2\vec{\jmath} + 8\vec{k} \end{array}$		
	$\begin{array}{c} A3 \\ \vdots \end{array} -3\vec{t} - 2\vec{j} - 8\vec{k} \end{array}$		
	$\begin{array}{cc} ^{\mathrm{A4}} & 3\vec{\imath} + 2\vec{\jmath} - 8\vec{k} \end{array}$		
Objectiv	Question		
66 6		4.0	1.00
	A1 : The particle moves in the direction of the force		
	A2 The acceleration is in the same direction as the force:		
	A3 : The velocity of the particle increases		
	A4 The velocity is in the same direction as the force		
Objectiv	Question		
67 6	A particle is undergoing uniform circular motion with a constant angular velocity. The particle is having:	4.0	1.00
	A1 a constant linear velocity		
	A2 an acceleration with changing direction		
	A3 : a constant acceleration		
	A4 an angular position that is constant		

	ctive Question			
68	68	A point mass of 1 Kg collides elastically with a stationary point mass of 5 Kg. After the collision, the 1 Kg mass reverses its direction and moves with a speed of 2 m/s. Which of the following statement is correct for the system of these two masses?	4.0	1.00
		A1 Kinetic energy of the large mass after collision is 5 J		
		A2 Momentum of the 5 Kg mass after collision is 4 Kg m/s		
		A3 Total kinetic energy of the system is 6 J		
		A4 Total momentum of the system is 3 Kg m/s		
Object	time Question			
Objec 69	69	Suppose a simple pendulum of length exactly 1m is used to measure the acceleration due to gravity g. A stopwatch with least count of 1 second is used to measure the time for 20 oscillations as 40 seconds. For this observation, which of the following statements is true?	4.0	1.00
		A1 The error in measuring the time period T is 0.05 seconds		
		A2 The error in measuring the time period T is 1 seconds		
		A3 Percentage error in determining g is 10%		
		A4 Percentage error in determining g is 1%		
Ohier	ctive Question			
70	70	A ball is dropped from a tall building and falls towards the ground with no air resistance. The isolated system for which momentum is conserved is	4.0	1.00
		A1 The ball and the building		
		A2 The ball only:		
		A3 The building only		
		A4 The ball and the earth:		
Objec	ctive Question			
71	71	A body initially at rest starts moving under the action of a constant force and travels a distance 25 cm in the first second. If the mass of the body is 25 grams, the force on it is	4.0	1.00
		A1 0.2N		

		A3 20N :		
		A4 2N		
Objec	tive Question			
72	72	Two bodies begin to fall freely from the same height, the second one starts falling t seconds after the first one starts. The time T at which the distance between the bodies is equal to L is	4.0	1.00
		A1 ½+tL/a :		
		$ \begin{array}{c} A2 \\ \vdots \\ 1/2 + L/at \end{array} $		
		A3 L/at :		
		A4 tL/2		
Objec	tive Question			
73	73	A block of mass 3 Kg slides down from rest along an inclined plane of angle30 degrees. There is no friction. What is the speed of the block after it moves a distance of 10 m along the plane?	4.0	1.00
		A1 : √2 m/s		
		A2 √5 m/s		
		A3 √10 m/s		
		A4 √15 m/s		
Ohiec	tive Question			
74	74	The acceleration of a system of two masses M and m connected by a massless string over a massless, frictionless pulley is	4.0	1.00
		$\stackrel{\text{Al}}{:} \frac{M}{m}g$		
		$\begin{array}{ccc} A2 & \frac{m}{M}g \end{array}$		
		$: \frac{M-m}{M+m}g$		

75	75	A rope of mass m is tied to a wall at one end and a person is pulling the other end horizontally. The force that the person should exert to make the rope perfectly straight and horizontal is	4.0	1.00
		A2 ∞:		
		A3 mg:		
		A4 : G		
)hiec	tive Question			
76	76	A mass m is moving to the right with velocity v. Suppose another mass M is dropped on it from above and suppose this new mass sticks to the first one. Which one of the following phrases describe this collision?	4.0	1.00
		A1 The collision is elastic and momentum conserving		
		A2 The collision is elastic and momentum non-conserving		
		A3 The collision is inelastic and momentum non-conserving		
		A4 The collision is inelastic and momentum conserving		
Object	tive Question			
17	77	Choose the quantity that is a scalar	4.0	1.00
		\vec{A} $\vec{A} \cdot (\vec{B} \times \vec{C})$		
		$\stackrel{A2}{:}$ $\vec{A} \cdot (\vec{B} \cdot \vec{C})$		
		$\stackrel{A3}{:} \vec{A} \times (\vec{B} \times \vec{C})$		
		$\stackrel{\text{A4}}{:} \vec{A} \times (\vec{B} \cdot \vec{C})$		
~1.				
Object 8	tive Question 78	The electric field at a distance d from an infinitely long conductor carrying a uniform charge density is	4.0	1.00
-				
		$egin{array}{c} {\rm A1} \\ {\rm :} \end{array}$ Proportional to d		
		A2 Inversely proportional to d		
		A3 : Inversely proportional to the square of d		

		A4 Proportional to the square of d :		
Objec 79	tive Question 79	If a sheet of dielectric is inserted in between the plates of a air capacitor, its capacitance will	4.0	1.00
		if a sheet of dielectric is hisered in between the plates of a an eapaction, its capacitance will		
		A1 Decrease		
		A2 Stay the same		
		A3 Increase		
		: mercase		
		A4 Become zero		
		: Become zero		
Objec	tive Question			
80	80	When a ray of light is refracted by a medium, the refracted ray does not have the same wavelength as the incident ray. This	4.0	1.00
		means that		
		A1 The frequency of the light has decreased but the velocity of the light remains a constant		
		A2 The frequency of the light has increased but the velocity of the light remains a constant		
		A3 : The frequency of the light remains constant but the velocity of the light has increased		
		A4 The frequency of the light remains constant but the velocity of the light has decreased		
		: The nequency of the light formalis constant out the vertexty of the light has decreased		
Objec	tive Question			
81	81	For a concave mirror of focal length 5 centimeters, the image of an object placed 7 centimeters from the mirror will be:	4.0	1.00
		Al		
		Al Real, upright and magnified		
		Δ2		
		A2 Virtual, inverted and magnified		
		A3		
		A3 Real, inverted and magnified		
		A4 Virtual, upright and diminished		
Objec 82	tive Question	Which is not an intensive variable in thermodynamics	4.0	1.00
		A1 Pressure		
		A2 Entropy		

		A3 Temperature :		
		A4 Chemical Potential:		
Object	tive Question			
	83	The semiconductor used for fabrication of light emitting diodes should have a band gap of at least	4.0	1.00
		A1 1.8 eV :		
		A2 0.5 eV		
		A3 10 eV		
		A4 : 120 eV		
Object	tive Question			
	84	The symbol below stands for which logic gate? A B	4.0	1.00
		A1 OR		
		A2 NOT:		
		A3 AND:		
		A4 NAND:		
	tive Question			
85	85	A thermocouple is made from two metals, antimony and bismuth. If one junction of the couple is kept hot and other is kept cold then, an electric current will	4.0	1.00
		A1 Flow from antimony to bismuth at the cold junction		
		A2 Flow from antimony to bismuth at the hot junction		
		A3 flow from bismuth to antimony at the cold junction		

6	86	Which of the following parameters does not characterize the thermodynamic state of matter?	4.0	1.00
		A1 temperature		
		A2 pressure :		
		A3 work		
		A4 volume		
Object	tive Question			
	87	What is the efficiency of Carnot engine when operated between 100 K and 400 K	4.0	1.00
		A1 0		
		A2 0.25		
		A3 0.75		
		A4 1 :		
Object	tive Question			
	88	When a beam of white light is dispersed with the help of the prism, the dispersion is greatest for	4.0	1.00
		Al Orange:		
		A2 Green:		
		A3 Red:		
		A4 Indigo		
Object	tive Question			
	89	What is the wavelength of light waves if their frequency is 5.0x10 ¹⁴ Hz?	4.0	1.00
		A1 0.60 m		
		A2 6.0 mm		
		A3 0.060 mm		

Objec	Objective Question								
90	90	Equation which measures alternating voltage is	4.0	1.00					
		A1 Vsin ω							
		A2 cin t							
		$\begin{vmatrix} AZ \\ \vdots \end{vmatrix}$ sin t							
		A3 Vosinot							
		A4 V=IR							
Object	ctive Question								
91	91	An observer moves towards a stationary source of sound with a velocity one-fifth of the velocity of sound. What is the	4.0	1.00					
		percentage increase in the apparent frequency?							
		A1 5%							
		A2 20%							
		: 20%							
		A3 Zero							
		A4							
		A4 0.5%							
	ctive Question								
92	92	If in the circuit, power dissipation is 150W, then R is	4.0	1.00					
		R							
		2 ohm							
		J.							
		1							
		15 V							
		Al 2 ohm							
		A1 2 ohm							
		A2 6 ohm							
		A3 5 ohm							
		A4 40hm							
		: ***********************************							
	ctive Question		4.0	1.00					
93	93	Mean square velocity of five molecules of velocities 2 m/s, 3 m/s, 4 m/s, 5 m/s and 6 m/s is	4.0	1.00					

	$^{A1}_{:}$ 10 m ² /s ²		
	A2 : 18 m ² /s ²		
	$^{A3}_{:}$ 20 m ² /s ²		
	$^{A4}_{:}$ 15 m ² /s ²		
Objective Question			
4 94	An ant is moving on the surface of a cylinder. The number of degrees of freedom associated with the ant is	4.0	1.00
	A1 one :		
	A2 two		
	A3 three :		
	A4 four:		
Objective Question 95	Convert the hexadecimal number 5B in to binary number.	4.0	1.00
	A1 1011011		
	A2 1010011		
	A3 1011001		
	A4 1001011 :		
Objective Question			
96 96	If F [$f(x)$] denotes the Fourier transform of the function $f(x)$, then F^4 [$f(x)$] is	4.0	1.00
	A1 f(x)		
	A2 f(-x)		
	A3: $-f(x)$		

97	tive Question		4.0	1.00
71	71	The function sin2(ωt) represents	4.0	1.00
		$^{\rm A1}$ simple harmonic motion with a period 2 π / $\!\omega$		
		$^{\rm A2}$ a simple harmonic motion with a period π / ω		
		A3 a periodic, but not simple harmonic motion with a period 2π / $\!\omega$		
		$^{\text{A4}}$ a period, but not simple harmonic motion with a period π / ω		
Object	tive Question			
98	98	A material B has twice the specific resistance of A. A circular wire made of B has twice the diameter of a wire made of A. Then for the two wires to have the same resistance, the ratio I_B/I_A of their respective lengths must be	4.0	1.00
		A1 2		
		A2 1		
		A3 1/2		
		A4 1/4 :		
Obiect	tive Question			
99	99	Kinetic energy of the molecules in terms of absolute temperature (T) is proportional to	4.0	1.00
		A1 T		
		A2 j		
		A3 V _r		
		A4 1/V _r		
Object	tive Question			
100	100	If planet A and B are circling around star S and the distance between planet A and star S is twice of that between planet B and the star S, which of the planet need more time to finish an orbit around the star?	4.0	1.00
		A1 Planet A:		
		A2 Planet B		
		A3 Planet A and Planet B will finish in same time		

A4 Planet A and Planet B will not be able to complete the orbit		
---	--	--